
Scaling storage systems for future eXascale environments

Christos Filippidis*

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

cfjs@outlook.com

Abstract. High performance computing (HPC) has crossed the Petaflop mark
and is reaching the Exaflop range quickly. The exascale system is projected to
have millions of nodes, with thousands of cores for each node. At such an
extreme scale, the substantial amount of concurrency can cause a critical
contention issue for I/O system. This study proposes a dynamically coordinated
I/O architecture for addressing some of the limitations that current parallel file
systems and storage architectures are facing with very large-scale systems. The
fundamental idea is to coordinate I/O accesses according to the topology/profile
of the infrastructure, the load metrics, and the I/O demands of each application.
The measurements have shown that by using IKAROS approach we can fully
utilize the provided I/O and network resources, minimize disk and network
contention, and achieve better performance.

1 Introduction

Large-scale scientific computations tend to stretch the limits of computational power
and parallel computing is generally recognized as the only viable solution to high
performance computing problems. I/O has become a bottleneck in application
performance as processor speed skyrockets, leaving storage hardware and software
struggling to keep up. Parallel file systems have be developed in order to allow
applications to make optimum use of available processor parallelism. The most
important factors affecting performance are the number of parallel processes
participating in the transfers, the size of the individual transfers and of course the
access patterns. The I/O access patterns are generally divided into the following
subgroups [1]:

(1) Compulsory (consist of I/Os that must be made to read a program’s initial
state from the disk and write the final state back to disk when the program has
finished. For example, a program might read a configuration file and perhaps an
initial set of data points, and then write out the final set of data points along with
graphical and textual representations of the results).
(2) Checkpoint/restart (are used to save the state of a computation in case of a
hardware or software error which would require the simulation to be restarted).
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(3) Regular snapshots of the computation's progress.
(4) Out-of-core read/writes for problems which do not fit to memory.
(5) Continuous output of data for visualization and other post-processing.

Another important factor that may significantly affect performance is the architecture
of the storage system, on which we apply the file system. Nowadays, a typical HPC
facility uses a small portion of the available nodes for storage purposes (I/O nodes
acting as storage servers). Normally each storage server provides a huge number of
hard disks through a RAID system. Current globally shared file systems, being
deployed at the aforementioned facilities using current storage architectures, have
several performance limitations when used with large-scale systems, because [2]:

(1) Bandwidth does not scale economically to large-scale systems.
(2)I/O traffic on the high speed network can be affected by other unrelated jobs.
(3) I/O traffic on each storage server can also be affected by other unrelated jobs.

The three (3) above problems are generally recognized as the most limiting factors for
developing future exascale storage infrastructures. Exascale systems will require I/O
bandwidth proportional to their computational capacity and it seems that current file
systems and storage architectures will not be able to fulfill this requirement. One
approach is to configure multiple instances of smaller capacity, higher bandwidth
storage closer to the compute nodes (nearby storage) [2]. The multiple instances can
provide exascale size bandwidth and capacity in aggregate and can avoid much of the
impact on other jobs.

This approach does not provide the same file system semantics and functionality as a
globally shared file system. In particular, it does not provide file cache coherency or
distributed locking, but there are many use cases where those semantics are not
required. Other globally shared file system semantics are required, such as a
consistent file name space, and must be provided by a nearby storage infrastructure.
In cases where the usage or lifetime of the application data is constrained a globally
shared file system provides more functionality than the application’s requirements
while at the same time limits the bandwidth which the application can use. Nearby
storage provides more bandwidth, but without offering globally shared file system
behavior [2].

The factors affecting performance are increasing if we consider the overall data flow
(remote-local access) within an international collaborative scientific experiment, like
the Large Hadron Collider (LHC) at CERN and KM3NeT. KM3NeT is a future
European deep-sea research infrastructure hosting a new generation neutrino detectors
that - located at the bottom of the Mediterranean Sea - will open a new window on the
universe and answer fundamental questions both in particle physics and astrophysics.

This kind of experiments are generating datasets which are increasing exponentially
in both complexity and volume, making their analysis, archival, and sharing one of
the grand challenges of the 21st century. These experiments, in their majority, adopt
computing models consisting of Tiers (each Tier is made up of several computing



Centers and provides a specific set of services) and for the different steps of data
processing (simulation, filtering, calibration, reconstruction and analysis) several
software packages are utilized. The computational requirements are extremely
demanding and, usually, spans from serial to multi-parallel or GPU-optimized jobs.

In order to confront those challenges we introduced IKAROS as a framework that
enables us to create ad-hoc nearby storage formations, able to use a huge number of
I/O nodes to increase the available bandwidth (I/O and network) [3,4]. It unifies
remote and local access in the overall data flow by permitting direct access to each
I/O node, regardless of the tier. In this way we can handle the overall data flow at the
network layer, limit the interaction with the operating system, and minimize disk and
network contention.

2 Dissertation Summary

IKAROS provides a dynamically coordinated I/O architecture for I/O accesses
according to the topology/profile of the infrastructure, the load metrics, and the I/O
demands of each application. By referring to the I/O requirements/demands of the
application we mean that IKAROS is not using a static/fixed algorithm for data
placement. Due to the numerous configuration parameters offered the users and
applications are able to choose the preferred strategy for each workload. In figure 1
we show an overview of the IKAROS framework: the input parameters used and the
resources managed by IKAROS (I/O nodes and storage media) in all the tiers of the
computing model.

Fig 1. IKAROS Framework

Currently, we feed the appropriate input parameters at the IKAROS framework
manually.

IKAROS allows data in a file to be striped across multiple disk volumes on multiple
heterogeneous nodes and provides the utility for the storage system to access and



transfer a data file in parts and in parallel mode, without a specific order according to
client requests. IKAROS defines three types of nodes: The User Interface (UI)/Client
node, the Meta-data node and the I/O node. IKAROS first version was designed as an
Apache Dynamic Shared Object (DSO) [3]. The latest versions are written in nodeJS,
which provides more flexibility and interoperability with web 2.0 platforms. IKAROS
node types are peers with the ability to act in any mode driven by client requests (i.e.
any node can act at the same time as a Client/UI, meta-data node or I/O node).

The UI/Client node type is not a typical client but rather is more like a gLite UI [3].
This node type provides services to many users. The users are not forced to use the
UI/Client node type. Alternatively, they can access IKAROS by using their own
browser or any other HTTP client such as curl and wget. In a typical scenario, a user
puts a request to his preferred IKAROS client (e.g: browser, other HTTP client, or
UI/Client node) in order to read data from the storage facility. This request triggers
the IKAROS module to interact with the meta-data node in order to fetch the
necessary information regarding the file partition distribution schema. The client, then,
establishes communication with the appropriate I/O nodes.

The IKAROS meta-data service (iMDS) holds a key role in the IKAROS architecture.
The iMDS allows us to handle the meta-data sub-systems differently based on the
needs. It may respond to a client/application request with three different ways. The
client may find the answer: 1) within his own “cache”, 2) locally at a nearby iMDS
utility or 3) at an external platform/utility. This approach, focusing on flexibility, can
scale both up and down and so can provide more cost effective infrastructures for
both large scale and smaller size systems.

Thus, we are able to use existing external infrastructures [5] (as the top level MDS
utility, in a tiered system), such as Facebook and Gmail, in order to dynamically
manage, share and publish meta-data. In this way we do not have to build our own
utilities for searching, sharing and publishing. Additionally, we are enabling users to
dynamically use the infrastructure, by creating on demand storage formations and
virtual organizations [5].

2.1 IKAROS overall data flow scenario-write request (remote-local access)

In this scenario we analyze a data transfer from a remote storage server to the local
parallel file system. In figure 2 we show the implementation of this action by
combining GridFTP with the PVFS2. The client initiates a third party data transfer in
order to transfer the data file from the the remote GridFTP server to the local parallel
file system, in this case we are using PVFS2. We implement the local GridFTP server
and the PVFS2 MDS at the frontend machine of the local computing cluster. Due to
the client request, the remote GridFTP server starts sending the data file to the local
GridFTP server by using N parallel data channels. The local GridFTP server moves
the data chunks to the PVFS2 I/O nodes. The combined use of GridFTP with the
PVFS2, for implementing the overall data flow, forces us to initiate many
independent transfers incurring much overhead to set up and release connections. This



approach can significantly impact performance due to the unnecessary network and
disk contention.

Fig 2. Overall data flow-write request, GridFTP + PVFS2

The network and disk contention mainly appears due to the lack of proper
coordination between the two systems, GridFTP/PVFS2. There is no guarantee that
the remote access protocol and the local parallel file system, in this case GridFTP and
PVFS2, have the same stripe size and the same stripe mapping. At its latest versions
PVFS2 provides these kind of information (stripe size and stripe mapping) so we may
achieve the required synchronization manually, but this in not also the case for other
parallel file systems like GPFS.

A solution could be to use the GridFTP striped server technique, which is not exactly
the case we show in figure 2. In figure 2 we are using only one remote GridFTP
server and the parallel data channels technique. In the striped server scenario the data
file will be striped at several remote GridFTP servers and the local I/O nodes will
have to act both as PVFS2 I/O nodes and local GridFTP servers. This means that we
must assign public IP addresses to all the local I/O nodes, which in most cases is not
desirable. We may bypass that by using a pNFS/PVFS2 combination instead of the
GridFTP/PVFS2 combination, but still we will not be able to properly configure the
local parallel file system on the fly. Another issue that we will have to consider is that
there is no guarantee that the GridFTP servers will stripe the data across the data
nodes in the same sequence as PVFS2 does across the I/O servers.

In figure 3 we analyze the same overall data flow scenario, a data transfer from a
remote storage server to the local parallel file system, but now we are using IKAROS
for the overall data flow in order to avoid the unnecessary network and disk
contention. Techniques like the reverse read implementation of the write request,
introduced by IKAROS, combined if necessary with reverse HTTP tunneling
techniques can help us provide proper coordination between remote and local access
and achieve better performance.

This approach allows us to mainly route the data at the network level and minimize
the usage of the operating system. In figure 3 the IKAROS client follows the
procedure demonstrated in [3] in order to trigger each local I/O node, which



participates in the transfer. Then each I/O node, based on this trigger,
makes a request to the remote storage server for the corresponding data chunk.
In this way we apply only coordinated parallel data transfers in contrast with the
GridFTP/PVFS2 case where we must manually synchronize the stripe size and the
stripe mapping between them.

Fig 3. IKAROS overall data flow-write request

3 Results

For the evaluation we are using two different testbeds: the ZEUS computing cluster
located at the National Center for Scientific Research “Demokritos” (soho-NAS
environment) and the Cy-tera machine which is a Regional European HPC facility
located at the Cyprus Institute (HPC environment). In figure 6 we show the two
testbeds. The ZEUS computing Cluster provides an infrastructure composed of ten
AMD Opteron CPU based systems (each with 8 CPU cores and 16 GB of RAM), four
800Mhz CPU based soho-NAS devices (each with 256 MB of RAM, 1000 Mbps
Ethernet controller and 3 TB of storage capacity) and ten 200Mhz CPU based soho-
NAS devices (each with 32 MB of RAM, 100 Mbps Ethernet controller and 2 TB of
storage capacity). The ZEUS computer Cluster also provides a 1000 Mbps full duplex
link between the nodes and an 2.5 Gbps WAN connectivity. In this study we are using
the four 800Mhz CPU based soho-NAS devices and the frontend.

The Cy-tera machine consists of 100 nodes (96 Compute nodes) each with 12 Intel
Xeon CPU cores, 48 GBs of RAM and one 15K rpms SATA local HDD. The nodes
are connected over a QDR (40Gbit/s) infiniband. The GPFS file system is
implemented by 4 storage servers. It is supported by 360 TBs raw disk space in 18
Raid-6 arrays each with 10 7200 rpms SATA HDD. The GPFS meta-data is provided
by 4 Raid-10 arrays (one associated at each storage server).

As we mentioned before, its extremely important to obtain information like the
storage architecture profile, the network topology, the I/O node and storage media
performance in order to configure/customize properly each data transfer request. In



figure 4 we show the performance of writing an 80 GBs file from one node to 1,2,4
and 8 storage servers. All nodes are equipped with only one hard disk. In this scenario
we are writing/partitioning the data file, which is located at the client side at 1 local
HDD, to 1-8 storage servers (1-8 HDDs).

The purpose of this measurement is to help us make an estimation of the optimum
load (read/write requests) that a hard disk can handle when we are transferring big
data files that do not fit to memory. This estimation applies to both testbeds because
the hard disks at the Zeus frontend and the disks at the Cy-tera computing nodes are
having similar performance. We can use this estimation in order to decide the optimal
number of the I/O nodes that the parallel file system should use in order to
stripe/partition the data file.

Fig 4. HDD Performance

Figure 4 shows that if the data file is located at a single disk, which is the case most of
the times (the compute nodes used by the applications are equipped with a single
disk), the best split ratio is 1:4. At the next section we show that if we maintain this
ratio (4 dedicated HDDs serving each client for writing/partitioning the file) we can
fully utilize the available I/O and network bandwidth.

In figure 4 we observe that by choosing an 1:4 ratio we achieve better performance
than by choosing the 1:2 ratio. This is expected because most controllers and data
media have queuing mechanisms, which when processing several parallel requests
ensure under certain circumstances a higher performance than when processing fewer
parallel or even only single requests. This, however, is always done at the price of
higher response times. If many parallel requests only entail an increase in response
time, and no longer in throughput, the disk subsystem is overloaded [6]. It seems
that the 1:4 ratio is the most sufficient ratio for writing a big data file, located in a
single disk, to the parallel file system.



Here we compare IKAROS with GPFS in data transfers with 80 GBs file size (in total)
and multiple clients, using the Cy-tera machine. In figure 5 we measure the GPFS
performance in the Cy-tera machine in order to properly choose the number of
concurrent clients at the experiments in figure 6.

For a given GPFS file system, the most important factors affecting performance (aside
from the access pattern) are the number of parallel processes participating in the
transfers, and the size of the individual transfers. Figure 10 shows that we achieve the
highest performance when the ratio of client processes to server nodes is near to 5:1
(though the nodes running our experiments have 12 processors per node, we ran only
one client task per node). This ratio is slightly better but close to the 4:1 ratio
measured at Lawrence Livermore National Laboratory at 2000 [7] by using 38 servers
and 152 clients.

Fig 5. Cy-tera-GPFS Performance

In figure 5 we wrote a 80 GBs file, splitted into separate files, one file for each client
process. As mentioned at [7] when the client:server ratio is too low the servers are
starved for data; when it is too high the receiving buffers fill up faster than they can
be drained, eventually causing packets to be dropped and retries initiated, reducing
performance. From figure 10 we conclude that for the Cy-tera machine we must not
initiate more than 20 simultaneously data transfers.

As we mentioned previously, the Cy-tera machine uses 180 hard disks distributed
at the 4 storage servers in 18 Raid-6 arrays. This Raid-6 configuration in theory could
provide a throughput close to 4200 MB/s which is way higher than the measured
GPFS peak performance at the this machine (around 1600 MB/s). At the following
experiments we show how IKAROS can fully utilize the available resources (I/O
nodes and storage media) and achieve better performance.

The following experiments have been chosen because they show the effects of
varying the I/O characteristics of application programs. We measured how aggregate



throughput varied depending on the number and configuration of client processes and
the size of individual transfers. We also show how GPFS and IKAROS performance
scale with system size and throughput of parallel tasks creating and writing a single
large file, and of reading an existing file.

To measure the throughput of writes, the benchmark performs a barrier, then each
task records a “wall clock” starting time, process 0 creates the file and all other
processes wait at a barrier before opening it, then all processes write their data
according to the chosen application characteristics (in the tests shown here, always
independently of each other, filling the file without gaps and without overlap); finally,
all processes close the file and record their ending time.

The throughput is calculated as the total number of bytes written in the total
elapsed wall clock time (the latest end time minus the earliest start time). This
approach is very conservative, but its advantages are that it includes the overhead of
the opening and closing and any required seeks, etc., and measures true aggregate
throughput rather than, for example, an average of per process throughput rates. For
implementing IKAROS we are using the computing nodes and the local hard disks
provided by them. All the nodes being used were on exclusive mode (only used by
our process).

The results, for the GPFS, indicate the peak performance the file system is capable of
delivering rather than what a user would see in the presence of other jobs competing
for the same resources. The I/O performance seen in real applications will depend on
complex interactions between the system and the application’s run time behavior.
Competition with other applications for I/O resources, wild access patterns, and some
randomness in the file system can cause performance to be lowered. IKAROS
framework enables us to create concurrent client requests through a coordinated I/O
architecture in order to prevent I/O system contention [8].

Fig 6. IKAROS vs GPFS by using several numbers of HDDs

In figure 6 we are using up to 16 concurrent clients due to the available nodes at the
Cy-tera machine and because the measurements in figure 10 clearly shows that the



GPFS performance, for the current system, is seriously impacted by using more than
20 concurrent clients. Each time we measure the performance of GPFS versus
IKAROS on 4:4, 4:2 and 4:1 write ratios (HDDs:clients). In this way we are able to
create a virtual cluster of dedicated (4:1) or semi-dedicated (4:2, 4:4) storage facility
for each client, where the I/O traffic can not be impacted by other client requests.

In figure 6 we clearly show that IKAROS can outperform GPFS by using 4:2, 4:1
ratios and that this approach can easily scale with only barrier the network bandwidth.
IKAROS improves performance by 33% with the 1/3 of the available hard disks [8].

4 Conclusions and future work

This study proposes a dynamically coordinated I/O architecture for addressing some
of the limitations that current parallel file systems and storage architectures are facing
with very large-scale systems. The fundamental idea is to coordinate I/O accesses
according to the topology/profile of the infrastructure, the load metrics, and the I/O
demands of each application.

By using the IKAROS reverse read technique, for write operations, we are able to
apply only coordinated parallel data transfers for the overall data flow (remote-local
access). In contrast with other solutions (e.g: GridFTP/PVFS2 combination) where we
are forced to initiate several independent data transfers incurring much overhead to
set up and release connections. This can significantly impact performance due to the
unnecessary network and disk contention.

The measurements have shown that by using IKAROS approach we can fully utilize
the provided I/O and network resources, and minimize disk and network contention.
We are able to achieve better performance by creating, on the fly, a virtual cluster of
dedicated (4:1) or semi-dedicated (4:2) storage facility for each client, where the I/O
traffic can not be affected by other client requests. In this way we managed to
improve performance by 33% with the 1/3 of the available hard disks.

As a future work we intend to develop an automated system to feed IKAROS with the
appropriate input parameter (figure 1). Probably, such a system could be part of an
existing scheduling system like SLURM[46] and HTCondor[47] and or a Message
Passing Interface (MPI).
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